SUGGESTED FERTILIZER PRACTICES FOR BRAMBLES, CURRANTS AND GOOSEBERRIES

By Dawn Pettinelli, Manager, Assistant Extension Educator

Brambles include raspberries, blackberries and recently developed hybrids such as tayberries. All have similar cultural and nutrient requirements. Berries are highly perishable and expensive so home plantings are an excellent way to assure a supply of this flavorful fruit.

Brambles tolerate a wide range of soil types but require sites with good drainage. Phytophthora root rot may be a problem on poorly drained sites. Ideal soils will be moderately fertile, slightly acidic, drain well and contain 4 to 8 percent organic matter.

As the amount of organic matter in a soil increases, so will its capacity to hold water. For maximum size and harvest, brambles should be provided with at least 2 inches of water per week during fruit swell and harvest. Increasing the soil’s ability to hold water and using mulch are especially important if rainfall or irrigation is limited through this period of development.

Brambles are susceptible to potassium deficiencies and this can result in soft, poorly formed fruit. A common material for increasing soil potassium levels is potassium chloride (KCl). Since brambles exhibit a sensitivity to chlorine, it may be advisable to use potassium sulfate (K₂SO₄) or greensand.

Currants and gooseberries are woody, perennial shrubs belonging to the genus Ribes. Their popularity has diminished somewhat over the years, but many still treasure the tart berries for jellies, pies and syrups. Plants are very hardy, self-fruitful and tolerate a partially shaded site. They prefer cool, moist growing conditions and a welldrained soil, rich in organic matter.

SIX MONTHS TO ONE YEAR BEFORE PLANTING

Brambles, currants and gooseberries all prefer a slightly acidic soil with a pH ranging from 6.0 to 6.8. Apply the amount of ground limestone recommended on the soil test report if it is necessary to adjust the soil pH. It is generally advisable to use a dolomitic limestone that contains both calcium and magnesium, especially if the soil has below optimum magnesium levels. If soil test magnesium levels are above optimum, a calcitic limestone can be substituted. Build up the organic matter by incorporating well-rotted manure, compost, peat moss or other organic material.

If soil test results for potassium are below optimum, apply potassium sulfate (0-0-43) at a rate of 3/4 lb (1 1/2 cups) or greensand (0-0-7) at a rate of 10 lb (14 cups), per 100 square feet. If soil test results for phosphorus are in the below optimum category, apply superphosphate (0-20-0) at the rate...
of 1 1/4 lb (2 1/2 cups), triple superphosphate (0-46-0) at the rate of 1/2 lb (1 cup) or bone meal (11-11-0) at the rate of 2 lb (6 cups) per 100 square feet. Incorporate all necessary amendments thoroughly to a depth of 6 to 8 inches. Retest the soil before planting.

FIRST YEAR OF PLANTING
Apply 1/2 oz (1 tbsp) 10-10-10 (or equivalent) in an area 18 inches in diameter after plants begin growing. Repeat the application 4 to 6 weeks later. Water liberally after each fertilizer application.

SECOND YEAR OF PLANTING
In early April, fertilize brambles by applying 3 oz (6 tbsp) of 10-10-10 (or equivalent) per 10 feet of row in a strip 2 feet wide centered on the plant row. Repeat this same rate 4 to 6 weeks later. For individual currant or gooseberry plants, use 1 oz (2 tbsp) 10-10-10 (or equivalent) per plant in an area 2 feet by 2 feet in each of the 2 applications.

THIRD YEAR AND OLDER
Fertilize brambles by applying 6 oz (3/4 cup) of 10-10-10 (or equivalent) per 10 feet of row in early April. Use half on each side of the row. Keep fertilizer granules at least 6 inches away from plant stems. Avoid fertilizers that contain chlorides. Repeat the same rate 4 to 6 weeks later. For individual currant or gooseberry plants, use 2 to 3 oz (1/4 to 1/3 cup) of 10-10-10 (or equivalent) per plant in each of the 2 applications.